California Department of Food and Agriculture

Division of Inspection Services
Center for Analytical Chemistry
3292 Meadowview Rd
Sacramento, CA 95832

Environmental Analysis Section

Jane White- Chemist
Paul Lee- Staff Chemist
Stephen Siegel- Supervising Chemist

Pyrethroids in sediment

- Adapted from: A sonication extraction method for the analysis of pyrethroids, SIU, M.J. Lydy
- Sample may be frozen and batched
- Thaw sample-decant excess water
- Weigh out 20grams of sediment
- Add 5 grams Copper
- Add MgSO₄ mix until consistency of sand
- Add 75mL's 1:1 acetone:hexanes

Pyrethroids in sediment

- Shake sample at 185 rpm for 15 minutes
- Decant through MgSO₄ into boiling flask
- Repeat shaking with 75 additional mL's
- Decant through MgSO₄
- Rinse with 1:1 acetone:hexanes
- Rotovap to approx. 5mL's
- Ready for clean-up procedure

Pyrethroids in sediment water

- Weigh sample plus bottle
- Transfer water portion to separatory funnel
- Add 60mL's hexanes to sample bottle
- Shake for 30 seconds
- Transfer remaining sample to funnel
- Shake funnel for 2 minutes

Pyrethroids in sediment water

- Allow layers to separate
- Drain off lower water layer
- Transfer hexanes through Na₂SO₄ to dry
- Transfer water back into funnel
- Repeat extraction 2 more times
- Collect all hexanes in 500mL boiling flask

Pyrethroids in sediment water

- Rotovap to approx. 5mL's
- Ready for clean-up procedure

Clean-up procedures

- Condition a 2 gram florisil SPE cartridge
- Use 10mL's 15% ether in hexanes.
- Follow with 20mL's hexanes
- Load entire extracted sample on SPE cartridge
- Rinse boiling flasks and load onto cartridge
- Elute pyrethroids using 30mL's 15% ether in hexanes

Clean-up procedures

- Evaporate sample to just dryness under gentle nitrogen stream
- Bring to final volume in hexanes
- GC/MS analysis final volume 1.0mL
- GC/ECD analysis final volume 2.0mL

LOD's and LOQ's in sediments				
Bifenthrin	0.11ppb	1.0ppb		
Fenopropathrin	0.11ppb	1.0ppb		
Permethrins	0.14ppb	1.0ppb		
Fenvalerates	0.11ppb	1.0ppb		
λ-cyhalothrin	0.12ppb	1.0ppb		
λ-cyhalothrin				
epimer	0.12ppb	1.0ppb		

LOD's and LOQ's in sediments LOD LOQ Cypermethrins 0.11ppb 1.0ppb Deltamethrin 0.10ppb 1.0ppb Resmethrin 0.90ppb 1.5ppb

LOD's and LOQ's in water				
	LOD	LOQ		
Bifenthrin	1.8ppt	5.0ppt		
Fenopropathrin	1.5ppt	15ppt		
Permethrins	7.7ppt	15ppt		
Fenvalerates	1.8ppt	15ppt		
λ-cyhalothrin	1.2ppt	15ppt		
λ-cyhalothrin epimer	1.1ppt	15ppt		

LOD's and LOQ's in water LOD LOQ Cypermethrins 1.8ppt 15ppt Deltamethrin 1.9ppt 15ppt Resmethrin 3.8ppt 15ppt

Stability of pyrethroids in sediment water

 Adding 10mL's hexanes to 1.0 liter sediment water sample prolonged the sample storage stability

Stability of permethrins in sediment water (100 ppt spike) Recovery after 28 days

Compound	w/o hexane	w/hexane
Bifenthrin	54.8%	83.4%
Fenpropothrin	77.6%	95.5%
Permethrin-t	14.6%	93.8%
Permethrin-c	42.9%	91.2%
Fenvalerates	44.5%	81.5%

Stability of permethrins in sediment water (100 ppt spike) Recovery after 28 days

Compound	w/o hexane	w/hexane
λ-cyhalothrin	52.8%	86.8%
λ-cyhalothrin		
Epimer	54.2%	90.0%
Cyfluthrin	42.7%	86.6%
Cypermethrin	44.8%	82.3%

Positive attributes of the sediment method

- Simple sample preparation procedure
- Sample preparation uses low cost equipment and commercially available SPE cartridges
- Analysis is performed using GC configured with an ECD detector
- Confirmation is performed using GC configured with a mass selective detector (MSD)

Negative attributes of the sediment method

- Extraction may not be as complete as if done by accelerated solvent extraction (ASE)
- Cleanup procedure may not remove enough matrix contaminates for easy identification on GC/ECD
- May be necessary to raise the reporting limit on "dirty" sediment samples
- Detection limit for some compounds may be too high on the GC/MSD even in SIM mode

